

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T780**(E)**(A1)T

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N4

(8080164)

1April 2019 (X-Paper) 09:00–12:00

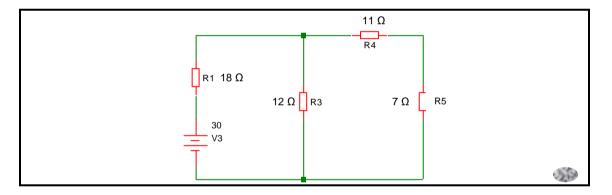
This question paper consists of 6 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.


1.1 Give the name of each of the following theorems:

55

- 1.1.1 The power transferred from a signal source into a load will be a maximum when the load resistance is equal to the resistance of the source.
- 1.1.2 In any linear multiple-source network, the resultant current in any branch is the algebraic sum of the currents that would be produced by each source acting separately.
- 1.1.3 In any closed circuit, the algebraic sum of the products of the current and the resistance of each part of the circuit is equal to the resultant emf in the circuit.
- 1.1.4 Any network can be viewed as a two-terminal network and can be replaced by a single source of emf in series with a single resistance.

 (4×1) (4)

1.2 Study the circuit diagram below and answer the question.

Calculate the current flowing across 12 Ω using Thévenin's theorem. (8) [12]

QUESTION 2

- 2.1 Explain the quality factor of a resonant circuit.
- 2.2 Calculate the value of Q of a resonant circuit where $X_L = X_C = 2,5 \text{ k}\Omega$ and the resistor value is 1 k Ω . (1)
- 2.3 A circuit consists of $Z_1 = 23 + j18$, $Z_2 = 40 j31$, $Z_3 = 55 + j30$. Z_1 is connected in series with Z_2 and the entire combination is then connected in parallel with Z_3 .

Calculate the total current using j-notation if the supply AC voltage is 240 V at 50 Hz.

(8) [11]

(2)

3.1	Explain the negative ion in a PN-junction diode.			
3.2	Explain the effect of each of the following types of bias applied to a PN-junction:			
	3.2.1 Forward-bias voltage			
	3.2.2 Reverse-bias voltage (2 × 2)	(4)		
3.3	A silicon diode with an unknown diode current has an applied forward bias of 0,6 V and $I_{\rm S}$ = 45 $\mu F.$			
	Calculate the value of the unknown diode current at a room temperature of 27 °C.	(3)		
3.4	Calculate the forward current (in milliamps) of a diode if it has a forward resistance of 0,805 Ω at a room temperature of 32 °C.	(3) [12]		
QUESTION 4				
4.1	Explain each of the following terms:			
	4.1.1 Transformation ratio			
	4.1.2 Ripple factor (2 × 2)	(4)		

4.2 A full-wave rectifier has $R_L = 250 \Omega$, $C = 120 \mu F$, $V_m = 280 V$ and f = 60 Hz.

Calculate:

- 4.2.1 The average DC voltage supplied to the load
- 4.2.2 The ripple factor

(2 × 2) (4)

(2) **[12]**

- 4.3 An LC- π filter has a choke resistance of 150 Ω and 178 Ω load resistance. The voltage input = 200 V. Calculate the output DC voltage. (2)
- 4.4 Give TWO disadvantages of an LC- π filter.

5.1	List and explain the THREE regions found on the output of a common emitter transistor. (3×2)	(6)
5.2	Give TWO disadvantages of noncomplementary class-B push-pull amplifiers.	(2)
5.3	What is the difference between MOSFET and JFET?	(3) [11]

QUESTION 6

6.1	Name TWO inputs of an operational amplifier.	(2)
6.2	Draw a labelled circuit diagram of an inverting operational amplifier with input and output voltage.	(4)
6.3	Draw a labelled circuit diagram of a differentiator.	(4) [10]

QUESTION 7

7.1	Explain	the forward-blocking state of a thyristor.		(2)
7.2	Name THREE practical applications of SCR.			(3)
7.3	Explain each of the following components of a closed-loop system:			
	7.3.1	Comparator		
	7.3.2	Feedback		
	7.3.3	Correcting signal	(3 × 2)	(6) [11]

QUESTION 8

8.1	Draw a circuit construction and circuit symbols of a photodiode.	(5)
8.2	What is the function of a demodulator that is sometimes connected to a linear variable differential transformer?	(2)
8.3	What is the function of the base terminal in a three-terminal phototransistor?	(3)
8.4	Explain the effect of increasing the light of a phototransistor.	(2) [12]

9.1 A cathode-ray oscilloscope (CRO) is the most important electronic measuring instrument. 550

> (3) Name THREE measurements that can be performed using a CRO.

- 9.2 Explain each of the following components obtained from the front panel of an oscilloscope:
 - 9.2.1 **Reference** line
 - 20 9.2.2 Intensity
 - 9.2.3 Trigger-level control

- (3×1) (3)
- 9.3 List THREE basic outputs produced by a function generator. (3)

[9]

TOTAL: 100